Implementing ODA from Within Stata: An Application to Estimating Treatment Effects using Observational Data (Invited)

Ariel Linden, Dr.P.H.
Linden Consulting Group, LLC

In this paper, I demonstrate how treatment effects in observational data can be estimated for both binary and multivalued treatments using the new Stata package for implementing ODA. Matching and weighting techniques are implemented and ODA results are compared to those using conventional regression approaches.

A prior paper\(^1\) introduced the new Stata package called oda\(^2\) for implementing ODA from within the Stata environment. This Stata package is a wrapper for the MegaODA software\(^3\), therefore the MegaODA.exe file must be loaded on the computer for the oda package to work (MegaODA software is available at: https://odajournal.com/resources/). To download the oda package, at the Stata command line type: “ssc install oda” (without the quotation marks).

This paper demonstrates how the oda package can be used to estimate treatment effects in observational data. For binary treatments, we use two common approaches for generating comparable samples based on the propensity score—matching and weighting. For multivalued treatments, we use the generalized propensity score to generate weights. Upon completing this preliminary step (matching or weighting), we then estimate treatment effects in oda by specifying the treatment as the class variable and the outcome as the attribute. For matching, we simply limit the analysis to the matched sample, whereas weighted analyses are performed by specifying the treatment as the class variable, the outcome as the attribute, and the weight using the wt() option.

Methods

Binary treatments – Matching

The first example uses data from a prior evaluation of a primary care-based medical home pilot program\(^4\) that invited patients to enroll if they had a chronic illness or were predicted to have high costs in the following year. The goal of the program was to lower health care costs for program participants by providing intensified primary care (see Linden [2011]\(^4\) for a more comprehensive description).

For the purpose of this empirical example, a one-to-one, propensity score-based matching approach was used. This entailed first
estimating the propensity score via the conventional approach of using logistic regression to predict program participation status using the 11 pre-intervention covariates, all entered as main effects, followed by implementation of an optimal matching algorithm to match pairs (one participant to one nonparticipating control) on the estimated propensity score, resulting in a total of 276 matched pairs.4

The outcome evaluated in this study was the difference in costs (post-treatment year minus pre-treatment year) between the treatment group and control group (this is commonly referred to as a “difference-in-differences”). Ordinary least squares (OLS) regression was used to estimate the treatment effect, and the results indicated a non-statistically significant difference between groups (P=0.113; 95% CI: -4321, 457).

We now evaluate these data using **oda** with the following syntax (see the help file for **oda** for a complete description of the syntax options):

```oda treat diffcost, pathodat("C:\ODA\")
store("C:\ODA\output") iter(25000) loo
seed(1234)
```

The above syntax is explained as follows: The variable “treat” is the **class** variable; the outcome variable “diffcost” is the **attribute**; the directory path where the MegaODA.exe file is located on my computer is "C:\ODA"; the directory path where the output and other files generated during the analysis will be stored is "C:\ODA\output"; the number of iterations (repetitions) for computing a permutation P-value is 25,000; leave-one-out (LOO) analysis should be performed, and the seed is set to 1234 to ensure replication of the permutation results (any numeric value can be used for the seed). It should also be noted that the sample was first limited to only the matched pairs before executing **oda**. However, we could have also simply used the [if][in] qualifier to limit the analysis to those matches (see the help file for **oda**).

The **oda** package produces an extract of the total output produced by the ODA software (the complete output is stored in the specified directory with the extension “.out”).

ODA model:

```
IF DIFFCOST <= 420.0 THEN TREAT = 0
IF 420.0 < DIFFCOST THEN TREAT = 1
```

Performance Index

- **Train**: Overall Accuracy: 54.17% 53.26%
- **LOO**: Overall Accuracy: 54.17% 53.26%
- **PAC TREAT=0**: 69.20% 69.20%
- **PAC TREAT=1**: 39.13% 37.32%
- **Effect Strength PAC**: 8.33% 6.52%
- **PV TREAT=0**: 51.20% 52.47%
- **PV TREAT=1**: 55.96% 54.79%
- **Effect Strength PV**: 9.16% 7.26%
- **Effect Strength Total**: 8.75% 6.89%

Monte Carlo summary (Fisher randomization):

- **Iterations**: 23000
- **Estimated p**: 0.289000

Results of leave-one-out analysis

- **52** observations

 Fisher's exact test (directional) classification table p = .063347

As seen in the **oda** output, the ODA model can be interpreted as follows: “if the difference in costs are <= $430, then predict that the treatment group is 0 (controls). If the difference in costs are > $430, then predict that the treatment group is 1 (treatment).”

The effect strength for sensitivity (ESS) is labelled in the output as “Effect Strength PAC” (Percentage Accuracy in Classification). In the training data the ESS is 8.33% and in the LOO analysis it is 6.52% (both are very weak effects).6 The permutation P-value for the training sample was 0.289 and for the LOO analysis 0.063. In summary, ODA could not find a model that sufficiently discriminated between treatment groups to elicit a statistically significant treatment effect in these data.

Binary treatments – Weighting

The second example of a binary treatment uses data from an evaluation of a disease management program designed for patients with
congestive heart failure. The primary goal of the intervention was to reduce avoidable hospitalizations. Here, all 1359 program participants are compared to all 6612 non-participants on the primary outcome—the difference in post-treatment minus pre-treatment hospitalization rates between groups (i.e., difference-in-differences).

The analytic process used in this empirical example involved: (1) estimating the propensity score using logistic regression to predict program participation status using pre-intervention covariates; (2) dividing the entire sample into 5 strata of the propensity score; (3) generating weights for each individual based on their study group and strata; and (4) estimating treatment effects using weighted OLS (i.e., the weight was specified as a weight in the OLS model). The results indicated a statistically significant difference in favor of the control group (P=0.031; 95% CI: 0.008, 0.174). In other words, the control group had a larger decrease in hospitalizations than did the treatment group.

The oda syntax for analyzing these data is as follows:

oda treat diffhosp, pathoda("C:\ODA\")
store("C:\ODA\output") iter(25000)
seed(1234) loo wt(weight)

As can be seen, the syntax is nearly identical to that used in the prior example, with the only difference being the addition of the wt() option which is how the user specifies the propensity score weight. The oda output for this model is as follows:

As shown in the oda output, the ODA model can be interpreted as follows: “if the difference in hospitalizations <= 0.5, then predict that the treatment group is 0 (controls). If the difference in hospitalizations are > 0.5, then predict that the treatment group is 1 (treatment).”

In both the training and LOO data, the weighed ESS (listed as “Effect Strength Wtd PAC”) is 3.10% indicating a very weak effect. The permutation P-value for the training sample was 0.046 and for the LOO analysis <0.0001. In summary, ODA found a model that poorly discriminated between treatment groups, and this cut-point elicited a statistically significant effect in favor of the control group. These results largely mirror those estimated using weighted regression.

Multivalued treatments – Weighting

This example demonstrates how to use oda for estimating treatment effects in an observational study with multiple treatments.
The data used here are the same as those used in the prior example (binary treatment with weighting) but the treatments are as follows: Those agreeing to participate received one of the following two interventions based on the subjective assignment by a program nurse: (1) periodic telephone calls from a nurse to discuss self-management behaviors (n=654); or (2) remote tele-monitoring (RTM) that entailed daily electronic transmission of the participant’s disease-related symptoms to a database followed by a call from the nurse if symptoms appeared to indicate the onset of an acute exacerbation (n=705). The control group received usual medical care only (n=6612). These data were originally analyzed using several different methodological approaches, with consistent results between models. The control group had a statistically lower hospitalization rate than the call group but was not statistically different than the RTM group. The RTM group had a statistically lower rate than the call group.

The steps involved for analyzing multivalued treatments, include: (1) estimating the generalized propensity score (GPS) using multinomial logistic regression with the multiple-level treatment variable as the outcome. Using this approach, each individual receives one propensity score corresponding to the probability of assignment to each treatment, conditional on baseline characteristics. Thus, in the current data, three propensity scores were estimated for each individual corresponding to their probability of assignment to non-participation, the telephonic intervention and RTM, respectively. (2) A single weight is computed based on an individual’s probability of receiving their actual treatment (there are several different weighting techniques used in practice, but nearly all are variations of this basic method). Finally, (3) treatment effects are estimated using weighted regression, and Bonferroni-adjusted pairwise contrasts are performed to determine where effects are found between groups.

The `oda` syntax for analyzing these data is as follows:

```
oda multireat hosp, pathoda("C:\ODA\")
store("C:\ODA\output") iter(25000)
seed(1234) loo wt(multwt)
```

As can be seen, the general syntax is identical to that used in the binary weighting example (however the treatment variable and weight here is for the multivalued treatments). The `oda` output for this model is as follows:

```
oda model:
-------
IF HOSP <= 0.5 THEN MULTREAT = 0
IF 0.5 < HOSP <= 6.5 THEN MULTREAT = 1
IF 6.5 < HOSP THEN MULTREAT = 2

Summary for Class MULTREAT  Attribute HOSP
------------------------------------------
Performance Index  Train  LOO
Overall Accuracy  69.6%  69.58%
Overall wtd Accuracy  68.86%  68.78%
PAC MULTREAT=0  81.00%  81.00%
PAC MULTREAT=1  29.97%  29.90%
PAC MULTREAT=2  0.14%  0.14%
Effect Strength PAC  5.56%  5.02%
Wtd PAC MULTREAT=0  80.19%  80.19%
Wtd PAC MULTREAT=1  28.45%  27.43%
Wtd PAC MULTREAT=2  0.12%  0.12%
Effect Strength wtd PAC  4.38%  3.87%
PV MULTREAT=0  84.47%  84.47%
PV MULTREAT=1  12.15%  11.77%
PV MULTREAT=2  5.88%  4.17%
Effect Strength PV  1.25%  0.20%
Wtd PV MULTREAT=0  83.75%  83.75%
Wtd PV MULTREAT=1  11.47%  11.11%
Wtd PV MULTREAT=2  4.68%  3.42%
Effect Strength wtd PV  -0.05%  -0.86%
Effect Strength Total  3.40%  2.61%
Effect Strength wtd Total  2.16%  1.50%

Monte Carlo summary (Fisher randomization):
------------------------------------------
Iterations: 25000
Estimated p: 0.001480

Results of leave-one-out analysis
------------------------------------------
(P-values are computed for binary class variables only)

As seen in the `oda` output, the ODA model can be interpreted as follows: “if hospitalizations <= 0.5, then predict that the treatment group is 0 (controls). If hospitalizations are between 0.5 and 6.5, then then predict the
treatment group is 1 (calls). And, if hospitalizations > 6.5, then predict that the treatment group is 2 (RTM).”

In both the training and LOO data, the weighted ESS is under 4% indicating a very weak effect. The permutation P-value for the training sample was 0.001. No P-value can be computed in LOO analyses with > 2 treatment (class variable) levels.

Given that a statistically significant effect has been computed, we can further investigate between which groups the effect is found. We can do this by reissuing the oda syntax for each pair of the treatments, for example:

oda multreat hosp if inlist(multreat, 0,1), pathoda("C:\ODA\") store("C:\ODA\output") iter(25000) seed(1234) loo wt(multwt)

Here, “if inlist(multreat, 0,1)” indicates that the analysis should be limited to treatments 0 and 1. The results of this pairwise analysis indicate no statistical difference between controls and RTM (P= 0.955), a statistical difference between controls and calls (P< 0.0001), and a statistical difference between RTM and calls (P=0.004). We did not adjust for multiple comparisons, but doing so will not alter the findings presently.

Discussion

This paper demonstrated how the new Stata package oda can be used to evaluate treatment effects in observational data with binary or multivalued treatments. ODA should be considered the preferred approach over commonly-used parametric models because ODA avoids the assumptions required of parametric models, is insensitive to skewed data or outliers, and has the ability to handle any variable metric including categorical, Likert-type integer, and real number measurement scales. Moreover, in contrast to regression models, ODA also has the distinct ability to ascertain where optimal (maximum-accuracy) cutpoints lie on the outcome variable, which in turn facilitates the use of measures of predictive accuracy. Moreover, ODA can perform cross-validation using LOO which enables assessing cross-generalizability of the model to potentially new study participants or non-participants.

Finally, the findings continue to support the recommendation to employ the ODA and CTA frameworks to draw causal inferences regarding treatment effects in observational data, and in data from randomized controlled trials. A large, ever-increasing body of evidence supports the use of ODA and CTA to evaluate the efficacy of health-improvement interventions and policy initiatives.

References

1Linden A (2020). Implementing ODA from Within Stata: An Application to Data From a Randomized Controlled Trial (Invited). Optimal Data Analysis, 9, 9-13.


**Author Notes**

No conflict of interest was reported.